TIPS FOR SELECTING A DECISION SUPPORT TOOL

Haleigh Summers, Ph.D.

Agricultural Geospatial Data Scientist

Leadership for Midwestern Watersheds

Mason City, Iowa ● November 9th, 2023

Agricultural Geospatial Data Scientist

- Water quality modeling
- Outcomes estimation:
 - Nutrients and sediment
 - Economics
- Data management
- GIS spatial analysis & maps

Outline

- •What are decision support tools?
- How to choose the right tool for your project
- Overview of commonly used tools
- Common input data (and how to find it)

Decision Support Tools

- Software-based tools that aid in conservation decision-making
- For conservation planners:
 - Identify opportunities for BMPs in the landscape
 - Estimate load reductions from BMP implementation
 - Evaluate financial cost of potential BMPs

1. Region/state availability

Regional

- Agricultural Conservation Planning Framework (ACPF)*
- Prioritize, Target, and Measure Application (PTMApp)*
- Soil Nutrient Application Planner (SnapPlus)

National

- Pollutant Load Estimation Tool (PLET)
- Spreadsheet Tool for Estimating Pollutant Loads (STEPL)
- Nutrient Tracking Tool (NTT)
- COMET-Farm/COMET-Planner

^{*}can be used nationally but requires more validation

- 1. Region/state availability
- 2. Model type

Planning vs. Estimation

BMP focused Outcomes focused

Use NRCS standards

Spatially
Explicit vs. Implicit

Precise spatial location Considers hydrology General spatial location
Considers soil type, not hydrology

Economics

- 1. Region/state availability
- 2. Model type

3. Outcomes measured

Water Storage

Phosphorus

Nitrogen

Carbon

Dissolved P

Adsorbed P

Sediment

Bacteria

Field Scale

- 1. Region/state availability
- 2. Model type
- 3. Outcomes measured
- 4. Analysis scale

HUC-12 Watershed

HUC-2
Watershed

Field Scale Fine resolution Field-specific

- 1. Region/state availability
- 2. Model type
- 3. Outcomes measured
- 4. Analysis scale
- 5. Input data required

HUC-12 Watershed

HUC-2 Watershed Coarse resolution
Generalized

Q-GIS

- 1. Region/state availability
- 2. Model type
- 3. Outcomes measured
- 4. Analysis scale
- 5. Input data required
- 6. Platform

ArcGIS Pro

ArcGIS Desktop

Excel

Online

Desktop Application

- 1. Region/state availability
- 2. Model type
- 3. Outcomes measured
- 4. Analysis scale
- 5. Input data required
- 6. Platform
- 7. Effort required

Time

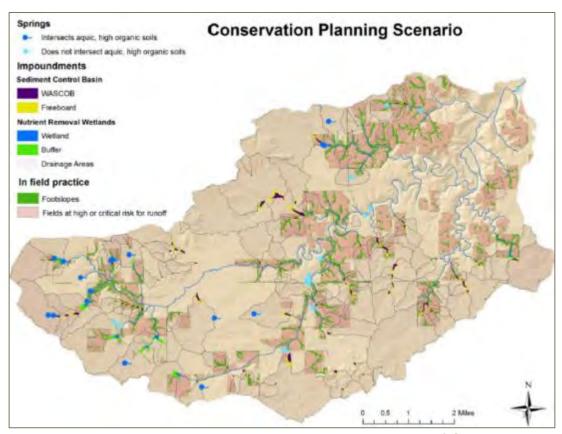
Hours to weeks

Difficulty

Student to GIS expert

OVERVIEW OF COMMONLY USED TOOLS

Pollutant Load Estimation Tool (PLET)


(replaced STEPL)

Region	National	
Model Type	Load Estimation; Spatially Implicit	
Platform	Online	
Scale	Field to Watershed (HUC-12)	
Effort	Low-Medium	
Input Data	Land use, soil properties, animal counts, manure application timeline, nutrient concentrations in soil and water, default data available	
BMPs Available	83 total in cropland, pastureland, feedlots, urban, and forest	
Outcomes	Nitrogen, Phosphorus, Sediment, Biochemical Oxygen Demand (BOD)	

2. Total load by land uses (with BMP)				
Sources	N Load (lb/yr)	P Load (lb/yr)	BOD Load (lb/yr)	Sediment Load (t/yr)
Urban	2339037.88	360613.50	9012742.98	53758.72
Cropland	1301670.39	182062.00	2789451.75	23301.94
Pastureland	936442.28	76757.32	3017130.35	6576.76
Forest	54612.30	26795.55	134310.74	1387.50
Feedlots	0.00	0.00	0.00	0.00
User Defined	0.00	0.00	0.00	0.00
Septic	2702.60	1058.52	11035.63	0.00
Gully	0.00	0.00	0.00	0.00
Streambank	0.00	0.00	0.00	0.00
Groundwater	1291078.24	57926.79	0.00	0.00
TOTAL	5925543.69	705213.68	14964671.45	85024.92

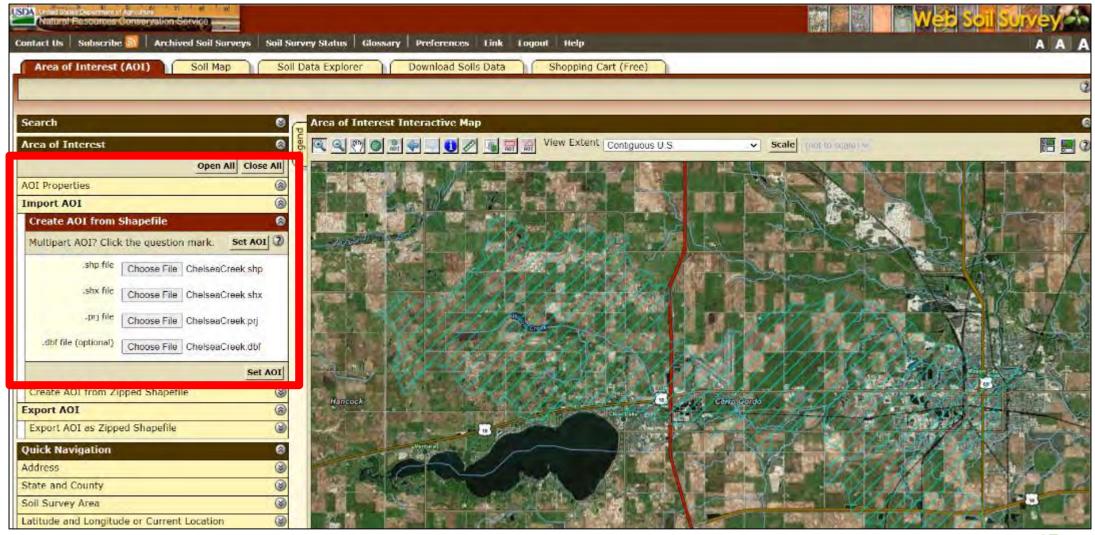
Agricultural Conservation Planning Framework (ACPF) + Financial and Nutrient Reduction Tool (FiNRT)

Region	Illinois, Iowa, Minnesota, and Wisconsin; parts of Indiana, Kansas, Missouri, Nebraska, and South Dakota	
Model Type	Planning; Spatially Explicit	
Platform	ArcGIS Pro	
Scale	HUC-12 watershed	
Effort	High (can hire consultant)	
Input Data	DEM, watershed data available on website	
BMPs Available	9 structural/edge-of-field BMPs + 2 in-field practices with FiNRT	
Outcomes	Opportunities for BMP locations, nitrate reduction and economics with FiNRT	

Nutrient Tracking Tool (NTT)

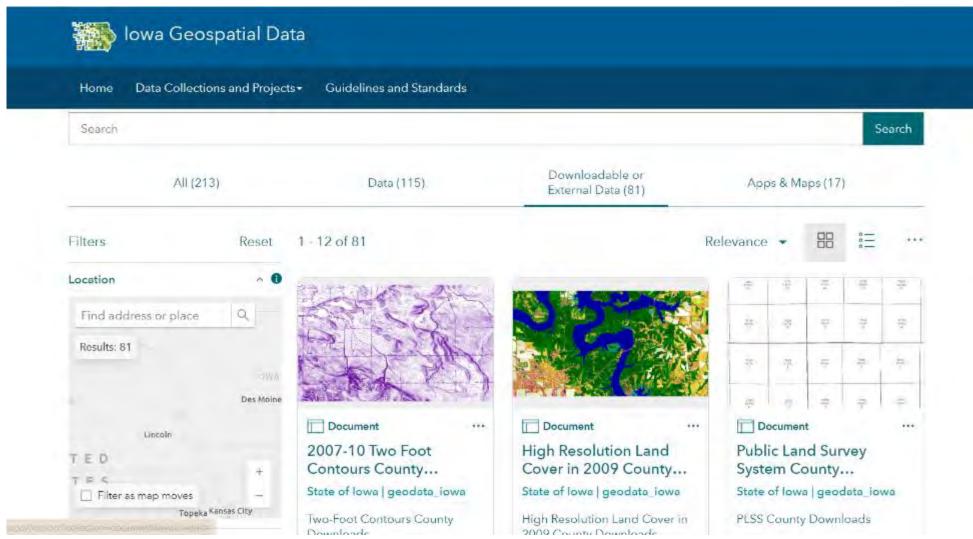
Region	National	
Model Type	Load Estimation; Spatially Explicit	
Platform	Online	
Scale	Field	
Effort	Low-Medium	
Input Data	Crop, tillage, fertilizer*, management dates*, equipment*	
BMPs Available	Cover crops, tillage, 12 structural practices	
Outcomes	Hydrology, Nitrogen, Phosphorus, Sediment, Carbon, Yield	

^{*} Optional input


Description	Losses (±)
Hydrology (in) ♀□	
Surface Runoff (in)	1.87 (1)
Subsurface Flow (in)	11.28 (3.4)
Tile Drain Flow (in)€	0 (0)
Irrigation Applied (in)	0 (0)
Deep Percolation (in)€	7.23 (2.2)
Precipitation (in)	39.92
N Losses (lbs)	4.82 (3.6)
Organic N (lbs)	0.66 (0.2)
Runoff N (lbs)	1.97 (3.3)
Subsurface N (lbs)	2.19 (0.1)
Tile-Drain soluble N (lbs)	0 (0)
N₂O (lbs)@	0 (0)
Deep Percolation N (lbs) •	9.41 (2.6)

COMMON INPUT DATA

(and how to find it)

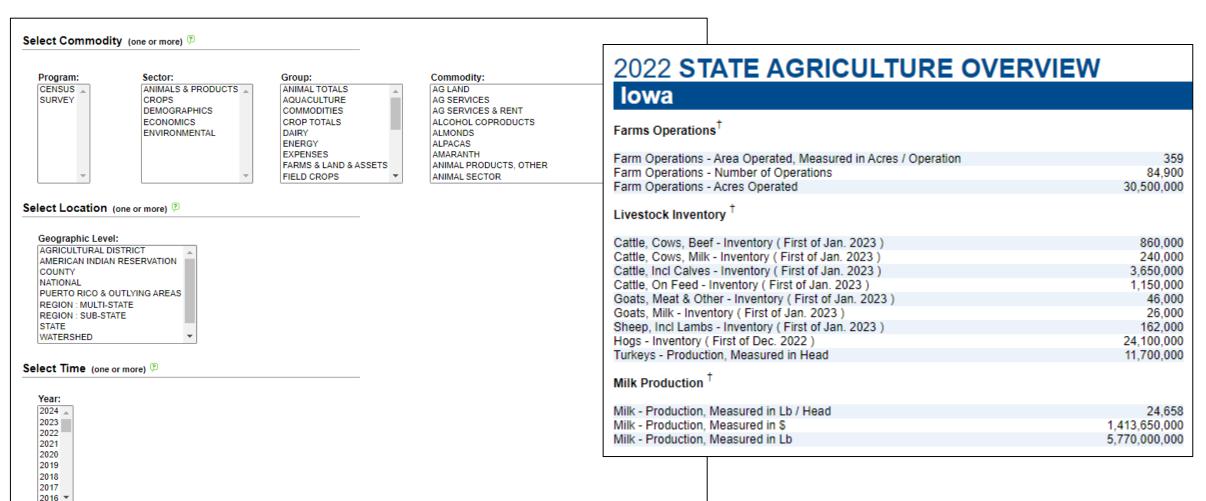

Web Soil Survey

- Soil data download
- Use shapefiles for increased precision

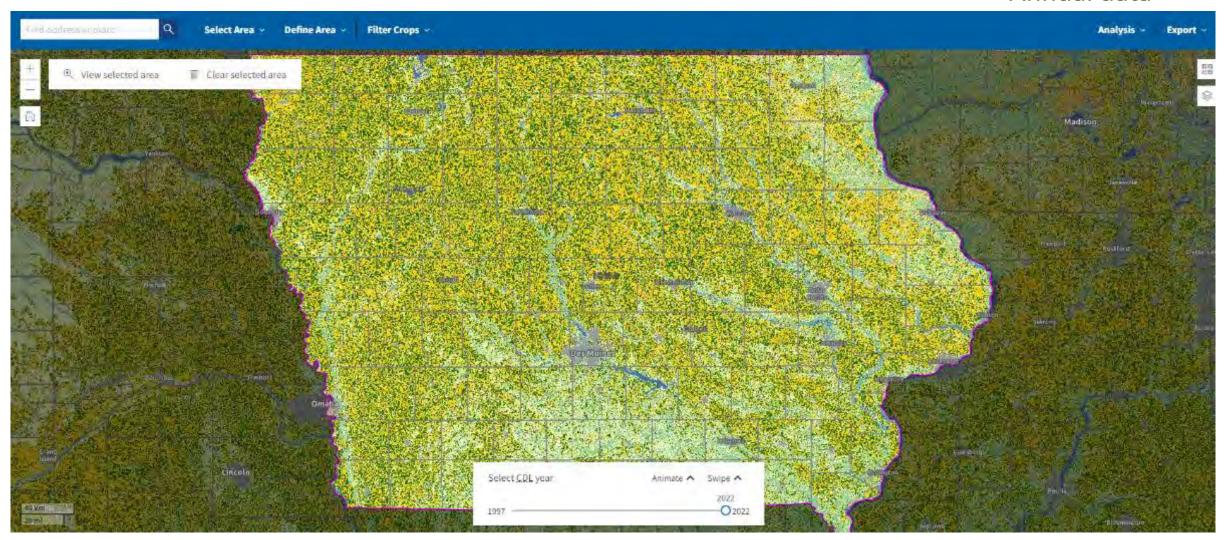
State GIS Databases

- Digital elevation models
- Likely higher resolution than national data

18


Geospatial Data Gateway

- Elevation data (coarse)
- Watershed boundaries


National Ag Statistics Service

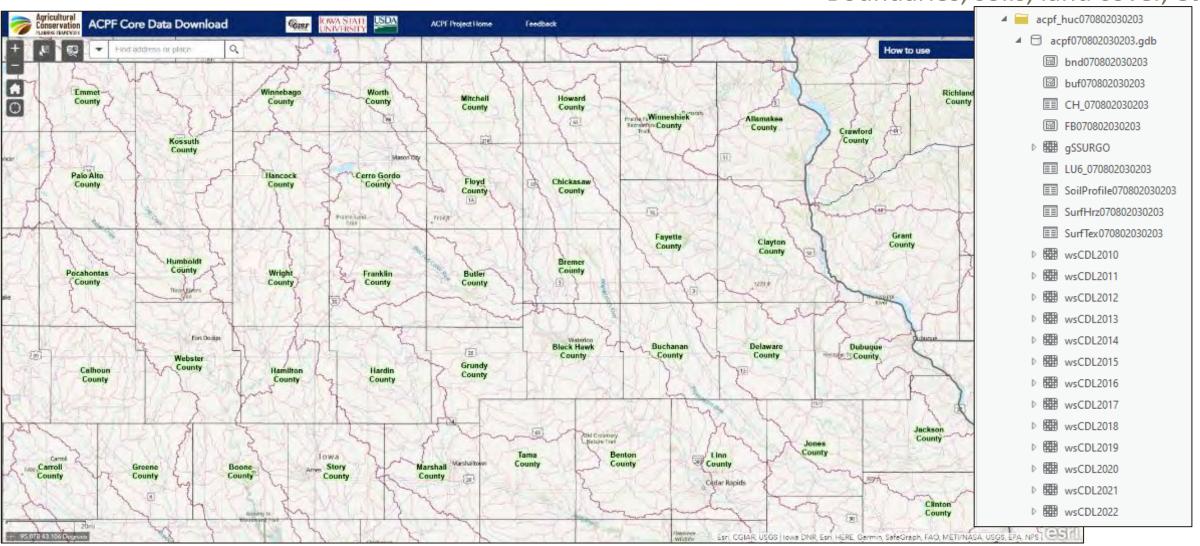
- Yields and acres grown
- Some values by HUC-08

Cropland CROS (Cropland Data Layer)

- 30-m raster
- Annual data

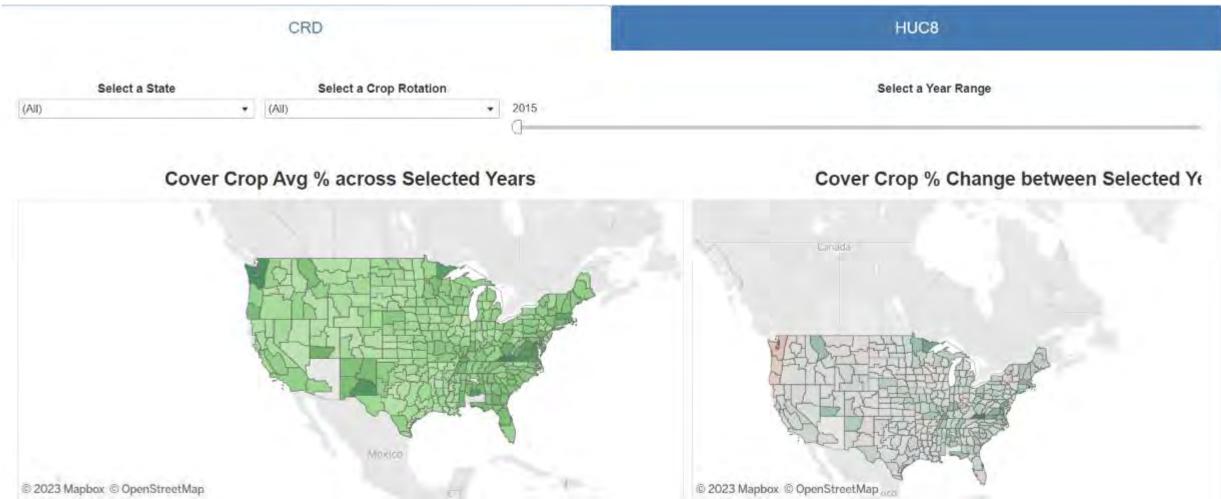
USGS StreamStats

- Estimated stream flow
- Coarse watershed delineation



usgs.gov/streamstats 22

ACPF Core Data


• HUC-12 geodatabase

• Boundaries, soils, land cover, etc.

Operational Tillage Information Systems (OpTIS)

- Cover crop and tillage
- HUC-8 or crop reporting district

Another Great Resource...

- 14 tools
- Monthly webinars:

Tools in 2023 Trainings*

May 3: Webinar Launch & PCOC (recording)

June 7: Model My Watershed (recording)

July 12: Nutrient Tracking Tool (NTT) (recording)

<u>August 2: NRCS Cover Crop Economics Tool</u> (economic) (recording)

September 6: FieldPrint Platform (recording)

October 4: EPA PLET (water quality) (recording)

November 1: PTMApp Web Tool (water quality)

December 6: AFT Retrospective-Soil Health Economics (R-SHEC) Tool (economic)

Tools in 2024 Trainings*

January 10: SIPES Method/SIDMA Tool (social)

February 7: Fast-GHG (climate)

March 6: Cool Farm Tool (climate)

April 3: TBD

May 1: COMET-Farm & COMET-Planner (climate)

June 5: CAST Tool (water quality)

July 3: TBD

*Subject to change

A Guide to Water Quality, Climate, Social, and Economic Outcomes Estimation Tools

QUANTIFYING OUTCOMES TO ACCELERATE FARM CONSERVATION PRACTICE ADOPTION

Michelle Perez, PhD | Emily J. Cole, PhD

25

Thank you!

Haleigh Summers, Ph.D.

hsummers@sandcountyfoundation.org